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PREFACE

This report describes work performed in the Mechanical Engineer-
ing Department of Montana State University under USAFOSR Contract No.
F49620-79-5-0210 and addresses the problem of laminar-turbulent tran-
sition in a homogeneous free-shear, or "mixing" layer. The work
extends recent research performed by its author while in another
organization, in applying a novel first-principles approach to tran-
sition in parallel shear flows. Cited references herein describe
previous applications of the same principle to boundary layers and
wakes.

wksThe encouragement of Lieutenant Colonel L. Ormand of AFOSR toward

the present program is gratefully acknowledged. Helpful technical
comments in this research were frequently received from P. J. Ortwerth
of AFWL. Thanks are also due A. J. Laderman and W. Moeny; to the
former for contributions regarding the Crocco relation, and to the

* latter for providing approximate self-similar forms of the laminar
shear layer growth.
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ABSTRACT

A necessary condition for the preservation of turbulence has
been utilized to predict laminar-turbulent transition in free shear,
or mixing, layers. Following earlier applications in wakes and
boundary layers, the condition is expressed in terms of a threshold
turbulence Reynolds number which can be computed if the turbulence
properties of the post-transitional flow are known. Assuming that
the latter are those reported for self-similar flows, general rules
for transition in all major types of shear flows are drawn. Numeri-
cal computations are presented for arbitrary homogeneous free shear
layer transition, identified as the most forward permissible turbu-
lence onset location. Transition is found to move downstream very
rapidly as the fast-stream Mach number is increased and the speed
ratio is decreased, and less rapidly as the slow stream is heated.
Agreement with available transition data is qualitatively good but
quantitatively fair, which is ascribed to missing information about
the shear layer turbulence and the observed tendency of available
transition data to depend on the unit Reynolds number.
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LIST OF SYMBOLS

b flow width

C constant in the transition equation (virtual origin
reference)

U' constant in the transition equation (thickness
reference)

C " = C' 2

c I  proportion of integral scale to flow thickness

DSL dividing streamline

FSL free shear layer

g(Ml) growth function of FSL thickness

G nondimensional laminar FSL thickness

h FSL thickness

k exponent of the temperature-viscosity relation

K nondimensional variable (reference: laminar thickness)

L transverse scale of turbulent flow

M Mach number

n exponent in generalized flow width formulas

P pressure

R 1 nondimensional velocity ratio = u2/u l

R 3  nondimensional total temperature ratio = T o2/Tol

Re A turbulence Reynolds number

ReAo threshold value of ReA

ReL Reynolds number based on dissipation scale

ReT turbulent Reynolds number
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Reb Reynolds number based on constant length

Rex 0  transition Reynolds number based on XoT

Relx Reynolds number based on fast-side properties and x

RehT transition Reynolds number based on thickness

Re xT transition Reynolds number based on distance from the
flow origin

T temperature

To 0stagnation temperature

u velocity

u* DSL velocity

w velocity defect

x distance along flow

xo 0distance from flow origin to the virtual turbulence origin

XoT distance from virtual origin to transition

'Y specific heat ratio

r(M1 ) nondimensional velocity fluctuation magnitude

6 shear layer thickness (laminar)

Au velocity difi:rence (maximum) across flow

E dissipation

9 nondimensional lateral coordinate

nondimensional velocity ratio (u1-U2)/(uI + u2);

dissipation scale (the latter in Section 3 only)

A integral scale (macroscale)

v kinematic viscosity

Vt turbulent kinematic viscosity

distance from virtual origin
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0o  FSL incompressible spreading parameter

S)l fast-side properties

)2 slow-side properties

)DSL properties along the DSL

), turbulent component

)(0) quantity in center of flow

)e quantity at flow edge

S)t turbulent quantity

( )l laminar quantity

)T at transition (except vT)
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FIGURE CAPTIOS

1. Movement of the "transition point" x- when the fow Reynolds number

Reb increases, for flows with turbulence Reynolds numbers increasirg

in the downstream direction.

2. Flow-field definition

3. Transition Reynolds number based on the distance from the virtual
origin of turbulence (adiabatic case).

4. Transition Reynolds number based on the distance from the virtual
origin of turbulence, with and without heat transfer.

5. Transition Reynold number based on the FSL thickness at transition,
for the adiabatic and heated cases.

6. Details of the transition Reynolds number based on the FSL thickness,
for the cooled case.

7. Transition Reynolds number based on thickness, for the case where
one side of the FSL is at zero velocity, showing the effect of heat
transfer.

8. Laminar FSL thickness, primarily for the adiabatic and heated
cases; the incompressible behavior is shown in the inset.

9. Laminar FSL thickness for the cooled case.

10. Transition ReynoIGs number based on distance from the a.tual flow
origin: adiabatic and heated cases

11. Transition Reynolds number based on distance from the actual flow
origin: coi.leo case

l?. Transition Reynolds number cross-plotted for the case = to
show effect of heat transfer

13. Relative position of the virtual origin of turbulence in a shear
layer: adiabatic and heated cases.

14. Relative position of the virtual origin of turbulence in a shear
layer: cooled case

15. Comparison of the present theory with experimental results, for
the homogeneous adiabatic case (air)
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16. Comparison of the present theory with experimental results, for
the homogeneous adiabatic case (air)

17. Minimum permitted stagnation temperature for FSL flows If Ml andare specified

18. Dividing streamline temperatures
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1. INTRODUCTION AND BACKGROUND

It is a telling point in the attempts to predict theoretically the
onset of laminar-turbulent transition, that progress in that direction in
the past half century has roughly paralleled progress in understanding
the turbulence itself.

The change of a physical system from one state to another can be
understood only to the extent to which each state is separately under-
stood. The transition process will therefore remain obscure as long as
turbulence itself remains obscure. It is, conversely, not too drastic a
statement to make that the theory which first provides a mathematical des-
cription of the complete transition process will also be first in supply-
ing the tools for describing the turbulent state.

The present study had its inception some years ago when the author
was engaged with experimental research in the hydrodynamic stability of
boundary layers, while also pursuing a combined experimental-theoretical
compendium of wake flows. Transition to turbulence was a feature of both
of these studies, and the author's plan was to seek an independent neces-
sary condition, or threshold, for the establishment of turbulence much as
a minimum critical Reynolds number exists for the establishment of hydro-
dynamic instability.

The first attempt to find and apply such a necessary condition dealt
with wake flows, and resulted in an algebraic expression for a Reynolds
number based on a physical length connecting the flow origin with a region
in the flow beyond which conditions were proper for the establishment of
self-preserving turbulence. Surprisingly, this Reynolds number also
agreed qualitatively and quantitatively with transition Reynolds numbers
observed for wakes. This agreement justified the risk of associating the
necessary condition wit. the transition phenomenon, and it was so proposed
in the journal publicat-on which followed [1].

The apparent success of the necessary threshold also justified, at
this time, its extension to other flows. The application to boundary
layers followed in 1978, and the results were published in references
2 and 3. Considering the scarcity of inputs needed to make detailed
computations, the boundary layer threshold results also gave more than
satisfactory agreement with boundary layer transition data. The dependence
of the transition (momentum) Reynolds number on Mach number and tempera-
ture ratio were in good qualitative agreement with the results, and phe-
nomena such as transition reversal were rationalized. Again because of
this similarity, the results of applying the necessary condition were
continued to be discussed as laminar-turbulent transition predictions.

I
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The present report presents the application of the necessary condi-
tion ("threshold" or "dissipation" theory) to a yet third type of parallel
shear flow which is the free shear layer (FSL) also called the "mixing
layer." The motivation for this work stemmed from problems in gas-
dynamic and chemical laser applications. Once more the applfcation of
the threshold motion is represented as an attempt to predict transition.

The approach hinges on exploiting the indisputable requfrement that
turbulence cannot preserve itself unless the viscous dissipation decreases
below a certain level relative to the turbulence inertia. The only new
elements involved are the assignment of a specific numerical value to
this threshold in the form of a minimum turbulence Reynolds number, the
computation of this number for the flow in question, and the assumption
that the wetted length (or momentum thickness) resulting from this compu-
tation represents a sufficient, as well as a necessary, quantity in des-
cribing the turbulence onset. These elements were first discussed in
reference 4, and an improved discussion in some detail is repeated in
Section 4 of this report.

In the same section, all typical parallel flows are discussed in the
light of the turbulence Reynolds number, and some implications about tran-
sition in each are drawn. The application to the free-shear-layer tran-
sition problem is then presented in Section 5.

2. OUTLINE OF THE METHOD

The transition estimation method followed in References 1, 2, 3, and
4, and the present report is as follows. The flow whose transition char-
acteristics are desired is first assumed fully turbulent and its turbulence
Reynolds number

ReA u'A (1)
A V

is computed using the available knowledge of u', A and v. This calcula-
tion reveals certain regions of the flow (e.g. upstream of a certain point)
where Re A lies below some previously determined threshold value ReAo. This

"point" is taken to be the location of laminar-turbulent transition. To
be successful in this approach we need to (a) agree on the general prin-
ci ple of turbulence quenching by viscosity, (b) determine an approximate
value for ReAo, (c) translate the criterion into an algebraic expression

for a transition Keynelds number and (d) demonstrate that the necessary
condition is also sufflcient.

That viscosity can effectively quench turbulence is assumed as agreed
upon; the subject is hardly controversial, and is discussed in a number of
texts (e.g. References 5 and 6). On the other end of the scale, sufficiency
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cannot be demonstrated; this approach can at present only rest its case "a
posteriori" on the strength of usually good qualitative and adequate num-
erical agreement with transition data, and on benefits such as the emer-
gence of the algebraic dependence of transition on the relevant variables.
An attempt to qualify the approach and to state its limitations will be
given in Section 5.

In the following discussion we will present justification for the
choice of the threshold functional and of the approximate value chosen for
it; and in Section 5 we will demonstrate its use in the free-shear-layer
problem.

3. DETERMINATION OF THE THRESHOLD REYNOLDS NUMBER

It is frequently mentioned that a proper measure of the effect of
viscous forces on turbulence is the turbulence Reynolds number defined by
Equation (1). In an order-of-magnitude sense, quenching of turbulence
occurs "when Re A is of order or smaller than unity." This author sought to

quantify this phrase by invoking experimental evidence, as discussed in
References 1 and 2. From experiments in decaying isotropic turbulence
reported in the literature, [7], [8], and [9], it was concluded that ReAo
lay between about 10 and 20. Also, by inverting the present procedure
(i.e. by invoking transition data to compute ReAo) Reference 1, Figure 2,

demonstrates that an approximate value of 15 will serve.

An interesting method of obtaining another estimate of the threshold
ReAo is obtained if we consider the effect of decreasing Reynolds number

on the turbulence spectrum. Of the many characteristic lengths (or wave-
numbers, or frequencies) important to the behavior of the spectrum, con-
sider the integral scale A and the dissipation scale X. In physical terms
A represents the largest division (or "eddy size") of the turbulence,
typically within an ord, - of magnitude smaller than the lateral flow
dimension (e.g. the shear layer thickness) and so fixed by the latter
independently of Reynolds number. It is implicit in the present approach
that turbulence cannot exist in the particular flow discussed if this scale
is caused, by viscosity, to exist in sizes much larger than stated above.
As seen in Section 5.2, this scale is taken to be a fixed fraction of the
lateral flow dimension.

The dissipation microscale A, however, is a measure of the smallest
eddies allowed to develop by viscosity, and is thus controlled by the flow
Reynolds number. As the Reynolds number decreases, A increases; but since
A < A by definition, this increase means that A approaches A. This results
in a depopulation of the spectrum energy at its higher wavenumbers while
the lower end of the spectrum remains unchanged, as demonstrated by Uberoi
and his coworkers [10]. Obviously, A cannot forever keep increasing as the
Reynolds number decreases, and its maximum value must be A; amy decrease of
the Reynolds number beyond that point will eradicate the turbulence itself,
as mentioned above.

I:
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Hinze formulates some interesting connections between X and A in
his discussion of isotropic turbulence [6, eqs. 3-106ff]. By equating the
viscous dissipation rate

= 15v u'2  (2)

with the power supplied per unit mass to the smaller eddies,
'3

= A u (3)A

he obtains the following relation between the Reynolds numbers formed
with A and x respectively:

ReA L Re2 (4)A 15 X

Since, according to Hinze, A is of "order unity," it follows from Equa-
tion (4) that the minimum condition for the existence of turbulence
= A (i.e. Re. = ReA) would give

ReAo 15 (5)

which agrees with our choice as mentioned above.

(The identification of the proportionality constant A with unity
is not explained by Hinze, however. Equation (5) is at best an approxi-
mation, although the numerical "agreement" with our criterion certainly
deserves the present mention. Hinze's discussion on the effect of charac-
teristic length scales on isotropic turbulence (Chapter 3 of Reference 6)
is in any way important in our present context).

Another method of arriving at the dissipation criterion is offered
by Ortwerth [111 who equated the laminar and turbulent dissipation at
the point of maximum shear of the flow. This criterion is expressed as

u'le = 36 (6)

where 1e is the FSL width defined by the tangent at the maximum shear

region and is related to the actual width h by 1e = 0.5h. Using h = 5A

as was done in Reference 1, we find that Equation (6) becomes

L7 _ _ _ __°_ _ _
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Re = 14.4 (7)
V AC

Here is, therefore, a different approach to the necessary condition
which is in close numerical agreement to our threshold of Equation (5).

Historically, Townsend [5] was among the first to recognize that
the threshold between the laminar and turbulent states can be predicted,
at least qualitatively, by a comparison of the eddy viscosity with the
molecular viscosity. In discussing the apparent constancy of a "turbu-
lent" Reynolds number

Re const. (8)
T T

for wake flows in general, he notes the peculiar properties of axisym-
metric turbulent wakes which he calls the "final period." In such wakes,
the transverse scale L of the flow increases as the 1/3 power of distance,
while the velocity decrement Au decreases as the -2/3 power of distance.
The numerator of Equation (8) thus decreases as the -1/3 power of dis-
tance, and to keep the ratio constant, the eddy viscosity vT should fol-

low suit. In axisymmetric wakes, therefore, the eddy kinematic viscosity
will ultimately fall (far downstream) below the magnitude of the molecular
viscosity and turbulence will be "quenched." This situation is unique to
the axisymmetric wake only, as also recognized in our own present frame-
work of the turbulence Reynolds number Re& (see Section 4). It is inter-

esting that Townsend's discussion pertains to relaminarization rather than
transition, portending the capability of the present approach to address
this phenomenon as well.

It is also pertine t that Lees [12] extended Townsend's concepts in
this regard, deriving e. timates for the minimum Reynolds number capable
of generating turbulence in two-dimensional wakes. This provided back-
ground for this author's more ambitious undertaking of wake transition
predictions [1] by assuming that the necessary condition is also sufficient.

Arguments such as those presented above seem to show that, for pur-
poses of making numerical estimates of transition location, a value of
ReAo = 15 is an acceptable first approximation. However, the issue is far

from settled, and the question whether Re o is "universal" remains open.

In the meantime, the value of ReAo = 15 will be used for FSL transition

calculations in Section 5, since the universality argument would be
strengthened by proof of "successful" predictions for all flows using
a single ReAo value. In fact, in the FSL computations of Section 5,

-iI
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the ReAo will be combined with other "universal" constants (such as the
incompressible spreading parameter a ) into a constant C; numerical in-

0

adequacies of the present method could then be attributed to lack of
data about such critical numbers, encouraging research into their
precise determination.

4. THE TURBULENCE REYNOLDS NUMBER IN PARALLEL SHEAR FLOWS

The present approach to the FSL transition question revolves around
the magnitude of the turbulence Reynolds number

ReA Au' (
V

in the shear layer. However, the approach is equally relevant to all
parallel shear flows. A brief general discussion of the behavior of
Re A in representative examples of such flows will be therefore given

below.

Classical parallel or near-parallel flows of importance include
wakes, pipe flows, jets, shear layers and boundary layers. There is
strong evidence that in their turbulent state these flows can be des-
cribed by similarity laws analogous to the theoretical similarity solu-
tions of their laminar counterparts. Some of these "laws" are still
evolving, but certain findings are established well enough to serve here
as valid generalizations. One is that the scale A is geometrically re-
lated to the flow width h:

A = c1 h, cI = constant (9)

Another finding relates the r.m.s. velocity fluctuation u' with the
"velocity scale" ue - u(o), representing the extremes in the velocity

profile:

u' = c2 (ue - u(o)) , c2 
= constant (10)

Utilizing a reference value ve for the viscosity, connected to v via

some temperature dependence
T k

-(11)

e e
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we can transform Equation (1) into:
Re =-k (12)

ReA = c1 hc 2 (ue - u(o)) ( e 1 e

The width h scales with some characteristic dimension b of the flow
and varies along the stream direction x, as does the so-called vel-
ocity defect U e- U(O)

w u w(x) (13)ue

so that
Re = ueb h(x) w(x) T-k (14)

)A : b
e Te

Thus ReA depends on the flow Reynolds number Reb Ueb/ve, on the dis-

distance x from the flow origin (and on the flow geometry via the same
functions h/b and w) and on the compressibility and heat-transfer, for
which information resides in the temperature ratio.

Table I reproduces a list found in some elementary texts (Refer-
ences 13 and 14) with the addition of the Re A behavior, at least with

distance from the origin. For incompressible adiabatic flows (T = Te)

the self-preserving behavior of h/b and W is a well-known and usually

simple function of Xn, where n takes on characteristic values depending
on the flow [13]. For compressible and/or diabatic flows k > o in Equa-
tion (14), generally causing ReA to increase away from the flow origin,

or at least to reinforc, the increase caused separately by the growth of
the flow width and to oi fset the decrease caused by the diminishing vel-
ocity defect. Thus, according to Table I, the axisymetric incompressible
jet has a constant ReA along its length, but when the same jet is initially

heated its ReA increases in the downstream direction. As another ex-

ample from Table I, compressibility or heating of a two-dimensional jet
increases only the rate, and not the fact, of its streamwise increase of
ReA ,

The present approach of finding flows, or segments of flows, where
turbulence is permitted can be illustrated by computing ReA from Equa-

tion (14) from any given flow. In Figure 1, such a computation is shown
qualitatively for the flows of category II in Table I. The intercept of
each curve with the threshold turbulence Reynolds number ReAo fixes the

most forward position XT in that flow where turbulence is allowed. As

the Reynolds number Reb increases XT moves toward the flow origin. If
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XT is identified with the transition point or zone it follows that, for

flows with increasing Re , (a) transition of the laminar flow will inevit-

ably occur at some downstream point and, (b) the transition zone will
advance upstream as the Reynolds number increases.

It can now be seen that for flows with constant ReA (category I in

Table I) the situation is drastically different because, in this case, the
constant - Reb curves (cf. Figure 1) will be straight lines parallel to the

ReAo line. It follows that, (c) for flows of constant ReA s the flow will

be either completely laminar or completely turbulent from its origin onward
depending on its Reb.

The incompressible axisymmetric wake, according to Table I, belongs
to a category with uniformity decreasing ReA, and in this case the Reb 

=

constant curves analogous to those of Figure 1 will have a negative slope.
It follows that, (d) for the axisymmetric incompressible wake, the end
state of the flow will always be laminar and, (e) such wakes of originally
high Reynolds number Reb will experience a relaminarization process. Con-

clusion (d) does not change when compressibility is present, but in this
case it is possible to have a wake experiencing transition downstream of
the body followed by relaminarization some distance thereafter.

In the preceding, we progressed from the qualitative estimates of
ReA behavior listed on Table I to statements about transition, risking

an extension of the necessary condition for the existence of turbulence,
into a sufficient condition as well. The justification is that the rules
(a)-(e) derived for the turbulence Reynolds number are overwhelmingly
supported by experimenta, evidence on transition. For example, the fact
that two-dimensional incopressible wakes are either completely laminar
or completely turbulent is so commonplace that it seldom evokes inquiry [15].
It was not until the last two decades that the study of the compressible
2-D wake revealed the existence of a definite transition zone as equally
commonplace [16]. Similarly, pipe flows do not possess a clear transition
zone [17], in agreement with rule (a), above. More importantly, the for-
ward movement of transition with increasing flow Reynolds number has been
observed in all flows listed under Category II on Table I, in agreement
with the present predictions. The tendency of the axisymmetric incompres-
sible wake to relaminarize has appeared in the literature under the guise
of the "final period" [5], while the tendency of its compressible counter-
part to undergo transition followed by relaminarization has also been dis-
cussed in the past [12].

The precise cause of the apparent agreement between our threshold
criterion and the observed behavior of transition is not clear, but it
certainly encourages us to see if the agreement extends to the quanti-
tative aspects of transition. Equations providing satisfactory quanti-
tative agreement with transition phenomena in wakes and boundary layers
have already been derived [1-3], and will now be sought below for the
free shear layer.
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5. TRANSITION IN THE FREE SHEAR LAYER

5.1 Definitions and Nomenclature

We are interested in predicting the location of laminar-turbulent
transition along a shear layer separating two chemically homogJmeous but
otherwise arbitrary streams. Subscripts 1 and 2 are used to label the
"fast" and "slow" sides respectively, i.e., u1 > u2 relative to a sta-

tionary observer. Since P1 = P2 9 the differences between the two streams

can be characterized by any three parameters, here chosen 'o be A, M, and
To2/To, (see List of Symbols). Theoretical solutions for the asymptotic

mean flow of these layers are available [18,19] for the laminar case and,
within the assumption of an eddy viscosity, for the turbulent case as
well. The available experimental data (ordinary or long-term averages)
support the theory quite well so that the growth rates, which for ex-
ample will be utilized below, can be considered well understood.

The object of our attention, the transition from a laminar to a
turbulent FSL, is an experimental fact and a postulate of the discussion
concerning Table I. It is important to the ideas expressed below to for-
malize the geometry of the transition zone as shown on Figure 2. Al-
though the transition process occupies a finite zone of considerable
length in reality, it is permissible to approximate it here with a cer-
tain hypothetical position (a "point") lying a distance XT downstream

of the flow origin. Because of the different growth rates of the lam-
inar and turbulent FSL boundaries, it then follows that a layer thickness
hT at transition can be defined from the intersection of these boundaries.

The virtual origin of turbulence then lies a distance xo downstream of

the actual origin and can be computed once XT is known, making possible

the computation of the turbulent FSL itself downstream of transition.
The calculation of x0 is therefore an important by-product of this work,

and will be discussed in Section 5.2.8.

It is important to make it clear at this point that the transition
"point" is the intersection of the asymptotic laminar and turbulent
boundaries, that is, of the boundaries defined according to the laminar
and turbulent similarity solutions; in other words, the actual transition
zone (shown by the fairing in Figure 2) is defined as the segment of the
FSL linking the self-similar laminar and turbulent flows. In this way,
we will be consistent with the computation of Re A which will utilize the

approximate formulas for the self-similar values of u' and A, as available.
There will, of course, exist cases (e.g. transition very close to the
laminar flow origin) where the laminar FSL will be too short to possess
a self-similar growth. In cases such as a laminar flow originating from
separation, too, it will be necessary to define the virtual origin of the
laminar flow as well.

)
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A second point regarding Figure 2 is that the FSL is pictured as
symmetric about a plane passing through the dividing streamline. Ac'ua'-
ly, the distribution of flow properties is asymretric in the general case,
as can be verified by inspecting the theoretical results of both larinar
and turbulent mixing layers.

Finally, the construction of Figure 2 represents the classic concep-
tion of mixing layers which ignores the more recent findings of Roshko
and his coworkers [20], that low-speed laminar mixing, at least, occurs
through a train of vortices reminiscent of the Karman v)rtex street be-
hind a cylinder.

Note in Figure 2 that K x - x ) is the distance measured from

the virtual origin of turbulence. The plan of the following Section is
first to compute the transition distance xoT from this origin, and then

to convert XoT to the actual transition distance XT. This conversion

will be done via the intermediate step of computing the layer thickness
hT at transition.

5.2 Transition Predictions

5.2.1 Method

The theoretical approach to predicting transition in the FSL is the
same as utilized earlier by this author [1,4], for deriving analogous
equations for the wake and boundary layer. The central statement of
this method is that the turbulence Reynolds number

Re ' (I)

in the downstream portion of the turbulent flow following the transi-
tion zone, has to have a minimum value ReAo. The mechanics of prediction

then consist, first, of assuming that the particular flow under scrutiny
is wholly turbulent; then, ReA is computed along this hypothetically tur-

bulent flow. The point along the flow where Re A equals ReAo is the trans-

ition point, upstream of which Re A is usually smaller than ReAo. Since

no turbulent flow can exist unless ReA > ReAo, thic upstream region is
laminar.

Thus, according to the above, the present task consists of comput-
ing the turbulence Reynolds number, given by Equation (1), along the FSL.
This means that the fluctuation intensity u', scale length A and kine-
matic viscosity v should be computed as a function of the distance x
from the flow origin, going downstream. Before this computation is done
below, however, it is necessary to clarify, or at least discuss, the
following conceptual difficulty.

I.
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The quantity Re. varies across the layer as well as with x. and

since u' is zero outside the FSL and has a maximum in it, then Re, will

also have a maximum in it according to its definition (Equation (1)).
The question now is, what value of Re, is to be chosen at each x. If

we choose the maximum Re,, then we imply that the flow can locally sus-

tain the turbulence if Re, reaches Re at that point only. This is

clearly awkward: assume, for example, that Re', = Re., at the center of

the flow section; turbulence will then only be permitted in the exact
center of the flow and not anywhere else, which hardly satisfies the
definition of a turbulent flow.

In parallel work done by this writer to investigate transition in a
boundary layer, the same question could not be circumvented, and the theory
had to consider the lateral variation of Re A at each x station. On the

other hand, in applying the theory to wakes, [1], successful predictions
were made using the ReA magnitude in the center of the flow. Therefore,

despite the misgivings of the preceding paragraph, we will here take the
following position: if a turbulent FSL has a maximum Re A equal to or larger

than the threshold ReAo, then that flow is permitted to be locally turbu-

lent. If, however, conditions are such that Re A at its maximum at some x

is below ReAo, turbulence is forbidden. Transition will be at the boun-

dary between the permitted and forbidden portions of the FSL.

This postulate now clears the way for computing a unique Re, (x)

for each given FSL. We know that u' will have a maximum on the dividing
streamline (DSL); thus, all quantities appearing in Equation (1) must be
computed there.

5.2.2 Calculation of the Turbulence Reynolds Number

The objective now is to compute the variation of Re A for any turbu-

lent shear layer, allowing for a wide variation of the FSL conditions
such as MV, X and To2/To, (no gas composition differences are considered

here; only homogeneous flows are discussed). In line with previous re-
marks, only the Re A along the dividing streamline will be computed.

Thus, for each turbulent FSL, a unique curve Re A (x) will be obtained;

the point where Re A = Re Ao will be the "transition point." Thus, the

transition distance xoT (see Figure 2) will be expressed in terms of

the FSL parameters:



and some constants which will be ciscussed in due course. The pardveor"
forr:inq Re. in Equation (1) will now be evaluated one b. one.

5. .2A Kinematic Viscosity

The subscript convention, accordiriq to Figure 2. wiW '!e to se..
for the faster and "2" for the slower stream, and subscrip- "DSL' for
properties on the dividing streamline ,DSLY. Thus,

(DSSL )- k +1 (16)
'DSL T I 16)

where k, the temperature-viscosity exponent, is about 0.75 for air.
The temperature ratio in this equation can then be found in the Appen-
dix:

T DSL 1 (1 y-1 2(T -1)M 1

TDSL _ 2 2 1 + - ) 2 (17)
1  M1 2(1+ )

5.2.2B Integral Scale

The integral scale A is perhaps the least known of the quantities
needed; in contrast with the Crocco relation giving Equation (17),above,
the scale will be only approximately estimated from experiments in boun-
dary-layers [21], and wakes [22]. Thus, it is assumed that (a) A is con-
stant across the FSL wi ch and (b) A is proportional to the turbulent
width ht of Figure 2:

A = c1 ht (18)

The width h is known from the work of Ortwerth and Shine [23] and
others:

ht = g(MI) (19)

where the function g(MI) contains the "thickening" effect caused by

the Mach number, and o is the incompressible spreading parameter to be

discussed farther below.

I ..
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In this work, it was necessary to express g(M ) analytically so
that transition calculations might be done. Calculated values are
available from Ortwerth and Shine [23] and Oh [24], as well as experi-
mental data from a number of sources (see Reference 25). The differences
among these values of g(Ml) are not significant, however, and it was de-

cided to compromise by curve-fitting g(M1 ) into:

g(Ml) = 0.3 + 0.7 exp ( -0.064Mi ) (20)

5.2.2C Fluctuation Intensity

According to Ortwerth [23], the dividing-streamline fluctuation in-
tensity is:

u' = 0.16 r (MI) (u, - u2) = 0.16 r (MI ) 2Xu (21)

Like the function g(M1 ), r (Ml) was for convenience approximated by

r (Ml) = exp ( -0.42M l) (22)

5.2.2D The Turbulence Reynolds Number

If we combine the above equations into Equation (1), we obtain:

- lE T1  k+l 2ReA  W 03 l - r (M )g(Ml  Ts L  + (23)
A[0.32 Cl 1f~- 1 ~1 (23)ReA ~ 1 0 11 DSL

The critical value Re Ao can be used to form a constant

C ReAc (24)
0.32 C1 -

0

Then the transition Reynolds number is, from (23):

Tk+ 1

Rexo C (TdsL k +l+l (25)=or( )g(M1) T 1 2

with Rexo uIxoT (26)

xoT = transition distance from the virtual origin of turbulence.
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The above Reynolds number, based as it is on XoT (see Figure 2), cannot

be immediately identified with any physical transition length, since xoT is

not known "a priori". It is therefore plotted on Figures 3 and 4 more as a
matter of interest than utility. The constant C will be discussed in Sec*ion
5.2.6.

5.2.3. The Transition Criterion Based on the Layer Thickness

More meaningful than the Reynolds number derived above is one based not
on XoT but on the idealized thickness hT shown on Figure 2. According to eq. '19):

hT - oT g(Ml) (27)

which can be considered to be either the thickness of the turbulent flow

after a distance XoT from the virtual origin, or that of the laminar flow at

a distance xT from the actual origin. Eliminating XoT among equations (25),

(26) and (27) we obtain:

UlhT C' (TsL k+l
RehT - I  _ -Tl Xtl (28)

with
Re AoC' - .3C (29)
0.32C

l

Equation (28), which is plotted on Figures 5, 6, and 7, is somewhat easier

to use than eq. (25) sinc the thickness hT can be mea ured without exact

knowledge of the actual fijw origin or the virtual origin of the turbulence;
the constant C' is related simply to C (compare equations (24) and (29))
and will be discussed in Section 5.2.6. Since eq. (28) has many cornron points
with the final expression for the transition Reynolds number given further
below, its discussion will be replaced (in Section 5.2.7.) by a discussion of
the final expression. The latter substitutes the laminar wetted length xT in

place of hT in eq. (28) or of XoT in eq. (25). To do that, it is necessary

to first consider briefly the equations describing the development of a laminar
free shear layer.

5.2.4. The Laminar Free Shear Layer Width

The laminar shear layer development, following the solutions of Goertler
for incompressible flows (Reference 26) has been solved for the arbitrary
homogeneous case by several workers including Crane (Reference 18), Mills
(Reference 19), Moeny (Reference 27), and others. In the case of Crane and
Mills the solutions are of the similarity type for arbitrary MI, X and T02/ToI;

I
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calculating hW(x) from their results is difficult, howevw;'r, since the latter
involve numerical computations although the solutions themselves are analytic.
In this report, therefore, we will use the approximate asymptotic formulas
for hl (x) derived by Moeny (Reference 27) following the integral method of
Dewey and Kubota (Reference 28).

Moeny derives the following approximate asymptotic expressions for two
"half-layers" 61 and 62 which make up the shear layer:

4(l + K) 12 x (31)

K+ R + 2 v-Rel3 x
1 /2

62 - R 4(l + K) ] x (32)
+ +2RIK /Relx

where:

6 2 u* R 1 -3(R1-l) + [33R + 34R1 + 33]l/2

K - = - = 2
61 1 -u* 2(3 + 2Rl) (33)

Rl u 1-X (34)

K +R
u* l+K (35)

61 + 62 = 6 (36)

and where the nomenclature is otherwise the same as in this report. The
physical asymptotic FSL thickness then is:

(1 + y-l 2 u*(l-R 3) - 3R, + 2 + R3

12 M) 3(1 - R1 )

(y-1) [2 3u* 2 + 4u* + 8 +- 2 2 15 ] 6

iA
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+ F (1 + ] -I M 2 *R

2 [ MI2Y.- IR1  [ Ti (1-R 3 ) (1+2R 3 ) + R3  ] -

3u*2 + 4Rlu* - 8R12 M12 15 52 (37)

where R3 
= T02/ToI.

Computations done with eq. (37) are shown on Figures 8 and 9. For
adiabatic and "heated" flows (T0 2/Tol = 1 and 3, for example) the behavior
of the thickness h1 is normal, as attested by Figure 8; increases in \, M
and To2/Tol, whether separately or in combination, cause a thickening of the

layer. The situation is altogether different for the case of cooling (for
example T0 2/T0 1 = 1/3 shown on Figure 9). Here the thickness increases with

increasing M1 only for X larger than about 0.2; it actually decreases with in-

creasing M1 for X < 0.2. However, we note from Figure 9 that this decrease

is arrested when the curves cross the dashed boundary shown in the Figure.
This boundary encloses the region which, as explained in the Appendix, involves
TDSL < 0 and/or T1 < 0 (the latter being more restrictive) caused by the

simultaneous prescription of Mi, X, and T0 2/T0 1. In other words, for this

region the FSL is unrealistic and will not be considered in further computations.
In passing, note that for incompressible layers (M1 = 0) the thickness

is shown on the inset of Figure 8. Also, when the two streams become equal
(X 0, T0 2/T o = 1) the FSL thickness approaches, from eq. (31)-(37), the

limit:

h1- /Relx : 4 /- = 6.93 .... (38)

which is shown on Figure 8.

5.2.5. The Criterion Based on Distance From the Origin

The results of Sections 5.2.3. and 5.2.4. now enable us to compute the
desired transition Reynolds number

RexT = l xT (39)

where xT is the distance between the transition location and the flow origin,

according to Figure 2. By equations (31)-(37) the relation between xT and

hT is:

!



-25-

Ih T  hT  u 1/2 T2
TT TT (,M 02  (40)

XT xT =_ XT Vl 01

and G is the function already plotted on Figures 8 and 9. At the same time,
we saw in Section 5.2.3. that:

e ul h C' TDsL k+l (41)hT T r (M 1  (T7 

If hT is eliminated between equations (40) and (41), we finally obtain:

RexT 1 Ul 1 (TDSL )2(k+l) ( _I)2
- C" V1  

x  - 2G2  -T (42)

with

k = 0.75 (for air)

As before, r and TDSL/T can be found from equations (17) and (22) respectively.
The constant C", related to C via equations (24) and (29), will be discussed
below.

Equation (42) is plotted in Figures 10, 11 and 12 vs. X, with Ml as a

parameter and for three typical values of T02/T01. For the adiabatic and

heated FSL (T02/T01 = 1,3 respectively) the results show a very rapidly in-

creasing transition Reynolds number as X decreases; this is fully expected
since RexT should be infinite when X = 0. The transition Reynolds number

also increases very fast as Ml increases. The increase with X is fastest

(of order X-2) at the smallest M and X1 and slower at the larger M, and A.

The dependence on M, is typical of the well-known stabilization of all parallel

shear flows as M1 increases.

The plots of Figures 10 and 11, and especially 12, show that transition
moves forward as the "cooling" increases, i.e. as T02 becomes smaller relative

to T.1; the shear layer, therefore is "wake-like" in the sense that transition

moves forward with cooling (Reference 29); the opposite is true, of course,
for boundary layers. However, the behavior of RexT is somewhat irregular

when T02/T01 = 1/3, as shown on Figure 11, when M1 > 1. For high Mach numbers,

especiallyRexT becomes rather insensitive to X. The termination points for

J

- - -

.- . . .. -
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the M1 I curves on Figure 11 define the "forbidden" region for cooled
shear layers corresponding to the comments relating to Figure 9.

It should be noted that for incompressible, adiabatic layers (Ml = 0,

0 2/Tol = 1) equation (42) becomes:

ReT = l 1 X+l 2
G

which is plotted on Figure 10.

5.2.6. Evaluation of the Numerical Constants

Accurate knowledge of the constituents of the constant C of equation (25)
are needed for numerical application of the transition prediction (eq. (42)).
In previous work (see Discussion in Reference 1) the threshold turbulence
Reynolds number ReAo had been found to be approximately 15. Use of the same

value in eq. (24) is highly desireable because it will test, in the long run,
the general validity of the present approach to the transition problem.

No information seems to exist for shear layers on the constant cI relating
the integral scale and the layer width (cf.eq. (18)). In fact, what is needed
in the value or variation of c1 as a function of Mi, X, T0 2/T01 etc. including

its change, if any, across the layer. This serious shortcoming will be met
here by assuming c1 = 0.2, a value deriving from wake (Reference 22) and

boundary layer studies (Reference 21).
The factor 0.32 in eq. (24) derives from the magnitude, measured by

several workers, of u' at its maximum point in the shear layer (the usual
finding is 0.16(uI-u 2 )), and here a factor of 2 is added by the algebraic

sequence of events). The e is no information assuring us that this value is
unaffected by heat transfer (T0 2/ToI 1). Actually, experimental data on u'
are very scarce for M1 > 0, as well as for sufficient number of xvalues; this

issue is certainly far from settled.
Using the most commonly known values of cl, ReAo, etc. (the spreading

parameter % = 11.3) we can then compute

C Re A _a 0 15 x 11.3 843 (44).32 C1  0.32 x 3.14 x 0.2 8

It then follows that the constant used for finding the transition Reynolds
number based on thickness of eq. (28) is:

C' 1 -- 5 234 (45)0 .32

~I
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while that used to find the transition Reynolds number based on the actual
physical length, in eq. (42) is:

C'' = C'2  =  54,760 (46)

5.2.7. The Virtual Origin of the Turbulent Flow

As already mentioned, knowledge of the virtual origin of the turbulent
FSL is needed to compute the growth of the latter, if and when the layer
itself experiences transition. Specifically, we are interested in knowing
the distance XoT of Figure 2 once we have established xT as was just done in

the previous section. This can be done directly from eqs. (25) and (42):

XoT - Ul XoT l Rexo C Re xo C" (47)

XT V1  Ul XT RexT - '- -)(RexT)

The ratio C/C" is given in the previous section as 0.0154.
Computations with eq. (47) are shown on Figures 13 and 14. For the

incompressible, adiabatic case the ratio XoT/XT is constant at about 0.74;

that is, the turbulent flow originates at a hypothetical point lying down-
stream of the actual flow origin, about 1/4 of the distance between the latter
and the transition point. Generally, too, the results show that the higher
the Mach nunier the closer the virtual origin lies to the transition point.
The inference is that the actual transition zone itself shrinks greatly at
the very large Mach nuners.

5.2.8. Comparison With Experiment

There are no other theoretical approaches to the FSL transition problem
for comparison with the present approach* Earlier statements found in the
literature (Reference 30) tend to associate the RexT with 1/X:

RexT 1 (48)

As already discussed in Section 5.2.5. in connection with Figure 10, the
present approach indicates a much steeper rise in RexT as X decreases, except

for high M, and possibly for low T02/1T01 . For example, whereas (48) implies

an increase in RexT by a factor of 100 between X = 1 and 0.01 at M, = 0,

T02/ToI = 1, the present approach, by eq. (42), gives an increase of about

5,000. In addition, the formulas derived here give explicitly the dependence
of RexT on M and T02/T01 for the first time.
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Comparison with experiment should, in principle, be straightforward,
but most experiments with mixing layers involve pre-transitional flows with
unknown or unclear laminar flow origin; such would be, for example, the case
of two streams initially separated by a partition, which mix together beyond
the trailing edge of the partition. The virtual origin of the laminar flow
in such experiments can be established based on details of the observed flow
field rarely presented in the literature. Or, one could compare such test
data with the present formulation of transition based on thickness (Section
5.2.3.) provided that the experimental paper gives a detailed account of the
pre-transitional (laminar) growth of the shear layer.

In the meantime, it is possible to compare eq. (42) with data from
experiments producing shear layers from the intersection of shock waves, as
reported by Crawford (Reference 31), Birch and Keyes (Reference 30), and this
author (Reference 4). These experiments define the laminar flow origin quite
precisely although they are usually restricted to adiabatic flows. This com-
parison is shown on Figures 15 and 16. According to the former the data of
Birch and Keyes are satisfactorily represented by the theory, but not so the
data of this author, which are lower than the theory by a factor of as much
as two. On Figure 16 it is seen that Crawford's increasing RexT as Ml increases,
although not at the rate or to the magnitude given by the theory.

The experimental results quoted above are obscured by a feature which
generates the vertical bars plotted on Figures 15 and 16, in lieu of points.
All data shown have been found to depend on the flow unit Reynolds number,
which is usually the lowest at the bottom of each bar and highest at its top.
This influence apparently is universal for all experiments shown; it seems
smallest in the Birch-Keyes tests and largest in the test of this author at
AEDC (Reference 4) where x was observed actually to move downstream as Re'
was increases. There is n explanation for this unit Reynolds number effect
although the trend is identical with the observed increase of boundary-layer
transition Reynolds number with unit Reynolds number. It would be pure
speculation to support that better agreement with the present theory would
be obtained if the test unit Reynolds number could be infinitely increased;
however, more experimenta' data are obviously needed to examine and verify
this effect.

Although the numerical agreement with data is only fair, the qualitative
trends of the increase of RexT with X and M, is clear. The overwhelming fact,
of course, is that the information needed to quantify this approach is not
yet available. Reading through Section 5.2.6. one is impressed with the
severity of the approximations made in order to evaluate C, C' and C", for
example. The data utilized to form these constants (e.g. the scale length,
fluctuation magnitude, etc.) is extremely maeager. Coupled with the inadequacies
of the transition data described above, one is forced to withhold judgement
on the theory until data become available - both for the ingredients of C
and for comparison with the transition predictions.

6. CONCLUSIONS AND RECOMMENDATIONS

The necessary threshold for turbulence preservation in a homogeneous
free-shear layer has been identified with the transition condition, and a
calculation of transition Reynolds numbers have been made for layers or
arbitrary jump conditions.

p
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The transition Reynolds number has been found to increase very rapidly
as the fast-side Mach number increases and as the velocity difference (jump)
decreases. It also increases, although less rapidly, as the total telperature
of the slow side increases. In addition, computations of the transition Rey-
nolds number based on thickness have been done, as well as of the location of
the virtual origin of turbulence. For incompressible, adiabatic shear layers,
for example, this origin lies at one-quarter the distance from the actual flow
origin to the transition station.

Numerical computations of the transition Reynolds number have been done
using identical criteria as in earlier reports on transition in wakes and boun-
dary layers. Although these inputs are considered still incomplete, they re-
sult in good qualitative and fair quantitative agreement with the theory. It
should be stressed that the incomplete state of the computations is caused by
the absence of precise measurements of "universal" turbulence properties.

The following are recommended steps to improve and expand the present work:

1) Experimentally, the observed dependence of RexT on the unit Reynolds

number must be first verified, preferably with non-optical techniques such as
hot-wire anemometry.

2) The present theory must be put to test by measuring RexT for as many
combinations of X, M, and T02/T01as practical.

3) On a theoretical basis, the relevant configuration of interest is not
the slipstream with well-defined origin, but the shear layer coming off the
trailing edge of a partition. For that case the present formulas must be
modified toaccount for the hypothetical origin of the separated laminar boun-
dary layer.

4) The present formulation must be extended to the heterogeneous mixing
case (two dissimilar fluids).

.... .
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APPENDIX A

THE DIVIDING-STREAMLINE TEMPERATURE IN SHEAR LAYERS
ACCORDING TO THE CROCCO RELATION

The objective of this Appendix is to derive an expression for the static
temperature Tn9; on the dividing streamline, which accounts for Mach number
and soeed rat Lvariation from low to high levels, as well as arbritrary total
temperature differences between the two streams. Excepting differences in
molecular composition, this would then provide the information needed to en-
compass all conceivable physical ranges of free shear layers.

Our task is, actually, to simplify and exploit the temperature-velocity
relation ("Crocco relation") presented by Shapiro (Ref. 32), Korst and Chow
(Ref. 33) and others:

T f(M1) - +f ( u T) 1 + - 1) (A.I)

u2 K 1 U1

u
lI

The objective here is to evaluate this formula at the dividing streamline

(or "DSL"):
UDSL l u2

UD L = 1 ( 1 + u2l (A .2 )
Ul  2

and express the result in terms of Mi, X and T0 2 /T0 1. Note that

f(Mi) =il M 1 
2  (A.3)

To do this, note that

U2

T 1 = - (A.4)

U2

T = T 2 (A.5)2 02 -2

Folding the latter two equations into (A.1) we obtain, after some algebra,
the following two alterbibtive equations:

I
I
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TDSL Tl A2  1 T
T - f(Ml) (- )2 - 1 1 T 2 (A.6)

TDSL - f(M2) ( ) (A.7)

T T 1  + A

with T 1--
2 (A.8)

These equations are still unsatisfactory because they do not contain the
ratio T0 2/T0 1 explicitly; further manipulation produces the desired result:

TDSL 1 1  2  T02  (y-l)M 1
2

Tl 2 (l + 1-i!Mi2 0I + T- ) 2(+ 2  (A.9)

T1  =~l ~01 2(1+x)2 A9

In equation (A.9) the parameters Mi, X and T0 2/T0 1 are independent, and any

set of them should define a unique TDSL/T1 value. Physically speaking, however,

there is an exception made when the second term on the r.h.s. of (A.9) exceeds
the first which, it will be noted, can happen expecially if T0 2/T0 1 < < 1.

In this case TDSL< 0, a clearly impossible (but algebraically permitted) result.

There are, therefore, minimum allowed values of T0 2/ToI which, combined with

any pair of prescribed Ml, A values, will give TDSL> 0 according to (A.9), and

these are plotted in Figure 17. An additional, but similar, restriction on
To02/To arises when we require that in the "slow" stream (subscript "2") the

temperature T2 > 0. This criterion can be derived from eq. (A.7) and (A.8)

and is plotted on the same figure. The criterion required to keep T2 > 0 is,

as Figure 17 shows, more restrictive than that requiring TDSL > 0; that is,

the latter criterion can be ignored so long as the former is accounted for.
Thus, according to Figure 17, if we hypothesize a FSL with M1 = 3 and x = 0.1,

say, then we can prescribe to this flow any T0 2/T0 1 larger than 0.42 or so.

Values of T0 2/T01 less than that will create a physically unattainable flow.

Thus, equation (A.9) subject to the restrictions of Figure 17 is the necessary
tool for computing the kinematic viscosity entering the transition formula in
the text.

We will forego demonstrating the lateral variation of temperature across
the FSL according to (A.1), since such plots are relatively easy to do. It
is, however, important to keep in mind that there are values of T2T1  for which
T does not vary monotonically from TI to T2. This can be seen by noting that
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T2  - [ 1 + - 1MI2 T02  - 2 -A.102

T 2 MI T 02 2 1 27T 1  ] - 2 Ml (T(A.10)

and plotting (T - TI)/T 1 vs. n, where as usual:

1 [ 1 + Xcosn ] (A.11)

The result will show that, especially for large M1 and e ena for T02/T0 1  1,

T arrives at a maximum between the two streams. The physical reason, of
course, is that as the fast stream slows down to match the speed of the slow
one, it experiences an isentropic temperature rise. In such cases the tempera-
ture profile resembles, as it should, a cold-wall supersonic boundary layer.

This parenthetic remark was made to prepare the user of eq. (A.9) for
occasional "odd" behavior of TnCL , such as an actual decrease for certain con-
ditions illustrated on Figure TY on which eq. (A.9) is plotted. Such behavior,
setting in for T02/T0 1 < 1, will have consequences in the transition predictions

found in the text.
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Figure 1. Movement of the "transition point" x when the flow Reynolds number
Reb increases, for flows with turbulince Reynolds numbers increasing

in the downstream direction.
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Fiatire 31. TrAnsitiOn Reynolds number based on the distance from the
virtual origin of turbulence (adiabatic case).
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Figure 6. Details of the transition Reynolds number based on the FSL
thickness, for the cooled case.
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Figure 8. Laminar FSL thickness, primarily for the adiabatic and heated
cases; the incompressible behavior is shown in the inset.
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Table 15. Comparison of the present theory with experimental results,
for the homogeneous adiabatic case (air).
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